2017年夏セミナー 東大京大阪大医学部への数学「極限の応用」

1学期に学習した数学Ⅲαの内容に関する入試問題を紹介します。数学Ⅲはこの後「微分法」「積分法」へと続いていくので、当然ながらこれらの範囲が入試のメインになりますが、「極限」に関する問題もチラホラ出題されているので侮れません。

1テーマ4問ずつの5テーマ、全部で20問の美しいセットです。全体的にやや難しめですが、がんばってついて来てください。数列の極限の有名問題($1\sim4$) 漸化式の図形への応用($5\sim8$) ガウス記号($9\sim12$) 連続性や収束・発散($13\sim16$) 関数の極限の図形への応用($17\sim20$)

1 [2009 同志社大]標準

 $a_1>4$ として、漸化式 $a_{n+1}=\sqrt{a_n+12}$ で定められる数列 $\{a_n\}$ を考える。

- (1) n=2, 3, 4, …… に対して、不等式 $a_n>4$ が成り立つことを示せ。
- (2) n=1, 2, 3, …… に対して、不等式 $a_{n+1}-4<\frac{1}{8}(a_n-4)$ が成り立つことを示せ。
- (3) $\lim a_n$ を求めよ。

2 [2013 神戸大]応用

数列 $\{a_n\}$ $(n=1, 2, \cdots)$ は $a_1=0, a_{n+1}=\frac{1}{4-a_n^2}$ $(n=1, 2, \cdots)$ を満たすとする。

- (1) すべての自然数 n に対し、 $0 \le a_n < 1$ が成り立つことを示せ。
- (2) 3次方程式 $x^3-4x+1=0$ は、0<x<1 においてただ 1 つの解 α をもつことを示せ。
- (3) (2) の α に対し、 $|a_{n+1}-\alpha| \leq \beta |a_n-\alpha|$ ($n=1, 2, \dots$) が成り立つような β ($0 < \beta < 1$) を 1 つ求めよ。
- (4) (2) の α に対し $\lim a_n = \alpha$ が成り立つことを示せ。

3 4STEPの197番なので明らかに基礎

h>0 のとき,不等式 $(1+h)^n \ge 1+nh+\frac{n(n-1)}{2}h^2$ が成り立つ。このことを用いて,数 列 $\left\{\frac{n}{3^n}\right\}$ の極限を求めよ。

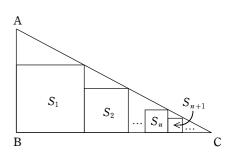
4 [2012 早稲田大]応用

c を正の実数として、漸化式 $a_n=\frac{a_{n-1}^2}{3^n}$ $(n\ge 1)$ 、 $a_0=c$ で定義される数列 $\{a_n\}$ を考える。 このとき $\lim a_n=\infty$ となるような c の範囲を求めよ。

[2013 芝浦工業大]基礎

AB=4, BC=6, $\angle ABC=90^{\circ}$ の直角 三角形 ABC の内部に, 図のように正方 形 S_1 , S_2 , ……, S_n , …… がある。

- (1) S_1 の 1 辺の長さを求めよ。
- (2) S_n の面積を a_n ($n=1, 2, 3, \dots$) とする。 a_n を n の式で表せ。
- (3) $\lim_{n\to\infty}\sum_{k=1}^n a_k$ の値を求めよ。



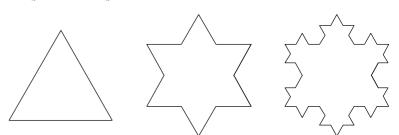
[2006 鳥取大]標準(有名問題)

平面内に多角形が与えられたとき、その各辺に対し次の操作を施す:

 (\mathcal{T}) 多角形の辺,それを仮に AB とすると,辺 AB を 3 等分する点 C, D をこの順に A に近い方からとり,これら 2 点を頂点とする正三角形の C, D 以外の頂点を E とし,点 A, C, E, D, B を順に線分で結んでできる折れ線により,辺 AB をおきかえる。 ただし,点 E は常に多角形の外側にとるものとする。

1 辺の長さが 1 の正三角形 T_0 の各辺に対し、上の操作 (\mathcal{F}) を施してできる多角形を T_1 、 T_1 の各辺に対し操作 (\mathcal{F}) を施してできる多角形を T_2 、 T_2 の各辺に対し操作 (\mathcal{F}) を施してできる多角形を T_3 、以下同様にして、多角形 T_n から多角形 T_{n+1} を作る。(下の図は 左から順に、 T_0 、 T_1 、 T_2 をかいたものである。)

- (1) 多角形 T_n に含まれる辺の個数 a_n および 1 辺の長さ l_n を、それぞれ n を用いて表せ、
- (2) 多角形 T_n の面積 S_n を n を用いて表し、 $n \to \infty$ のときの極限を調べよ。
- (3) 多角形 T_n の周の長さ L_n を n を用いて表し、 $n \to \infty$ のときの極限を調べよ。



2017年夏セミナー 東大京大阪大医学部への数学「極限の応用」

1 学期に学習した数学Ⅲαの内容に関する入試問題を紹介します。数学Ⅲはこの後「微分法」「積分法」へと続いていくので、当然ながらこれらの範囲が入試のメインになりますが、「極限」に関する問題もチラホラ出題されているので侮れません。

1テーマ4問ずつの5テーマ、全部で20問の美しいセットです。全体的にやや難しめですが、がんばってついて来てください。数列の極限の有名問題(1~4) 漸化式の図形への応用(5~8) ガウス記号(9~12) 連続性や収束・発散(13~16)関数の極限の図形への応用(17~20)

7 [2016 大分大]標準

自然数 n に対して関数 $y=2nx-x^2$ のグラフと x 軸で囲まれた領域 (境界を含む) R_n を考える。

- (1) 領域 R_n に含まれる格子点 (x 座標と y 座標がともに整数である点) の数 S_n を求めよ。
- (2) 点 A(0, 0), B(2n, 0), および関数 y の頂点を結ぶ線分で囲まれた領域 (境界を含む) に含まれる格子点の数 T_n を求めよ。
- (3) $\lim_{n\to\infty} \frac{T_n}{S_n}$ を求めよ。

8 [2014 名古屋大]応用

xy平面の $y \ge 0$ の部分にあり、x 軸に接する円の列 C_1 、 C_2 、 C_3 、…… を次のように定める

- ・ C_1 と C_2 は半径1の円で,互いに外接する。
- ・正の整数 n に対し, C_{n+2} は C_n と C_{n+1} に外接し, C_n と C_{n+1} の弧および x 軸で囲まれる部分にある。

円 C_n の半径を r_n とする。

- (2) すべての正の整数 n に対して $\frac{1}{\sqrt{r_n}} = s\alpha^n + t\beta^n$ が成り立つように、n によらない

定数 α , β , s, t の値を 1 組与えよ。

(3) $n \to \infty$ のとき数列 $\left\{\frac{r_n}{k^n}\right\}$ が正の値に収束するように実数 k の値を定め、そのときの極限値を求めよ。

9 [2001 東海大]基礎

lim	$[10^n\pi]$		
$n \to \infty$	10 ⁿ	_	

ただし, [x]は, 実数 x に対して, $m \le x < m+1$ を満たす整数 m である.

[10] [2009 慶応義塾大]基礎

実数 α に対して α を超えない最大の整数を $[\alpha]$ と書く。 [] をガウス記号という。

- (1) 自然数mの桁数kをガウス記号を用いて表すとk= である。
- (2) 自然数 n に対して 3^n の桁数を k_n で表すと $\lim_{n\to\infty}\frac{k_n}{n}=$ である。

[11][2004 東洋大]標準

自然数 k に対して \sqrt{k} の整数部分を f(k) とし、自然数 n に対して $S(n) = \sum_{k=1}^{n^2} f(k)$ とおく.

- (1) S(4) を求めよ.
- (2) S(n) を求めよ.
- (3) $\lim_{n\to\infty} \frac{1}{n^3} \sum_{k=1}^{n^2} \sqrt{k}$ を求めよ.

[12] [2011 東京理科大]応用

実数xに対し、[x]はx以下の最大の整数を表す。

- (1) k, t を自然数とするとき, $\left[\sqrt{k}\right] = t$ となるような k のとりうる値の範囲を, t を用いた不等式で表せ。
- (2) n を自然数とし、和 $\sum_{k=1}^{n} \frac{1}{2[\sqrt{k}]+1}$ が自然数となるような n の値を、小さい順に並べて、 a_1 、 a_2 、 a_3 、…… と定める。
- (ア) a_1 , a_2 の値を求めよ。
- (イ) 自然数 m に対して、 a_m および $\sum_{k=1}^{a_m} \frac{1}{2[\sqrt{k}]+1}$ を m を用いて表せ。
- (3) $\lim_{n\to\infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{2[\sqrt{k}]+1}$ を求めよ。

2017年夏セミナー 東大京大阪大医学部への数学「極限の応用」

1 学期に学習した数学Ⅲαの内容に関する入試問題を紹介します。数学Ⅲはこの後「微分法」「積分法」へと続いていくので、当然ながらこれらの範囲が入試のメインになりますが、「極限」に関する問題もチラホラ出題されているので侮れません。

1テーマ4問ずつの5テーマ、全部で20問の美しいセットです。全体的にやや難しめですが、がんばってついて来てください。数列の極限の有名問題($1\sim4$) 漸化式の図形への応用($5\sim8$) ガウス記号($9\sim12$) 連続性や収束・発散($13\sim16$) 関数の極限の図形への応用($17\sim20$)

[2012 京都大]基礎

a が正の実数のとき $\lim_{n\to\infty} (1+a^n)^{\frac{1}{n}}$ を求めよ。

[14] [2001 公立はこだて未来大]標準

次の問いに答えよ.

(1)
$$f(x) = \lim_{n \to \infty} \frac{x^{2n} - x^{2n-1} + ax^2 + bx}{x^{2n} + 1}$$
 を求めよ.

(2) 上で定めた関数 f(x) がすべての x について連続であるように、a, b の値を定めよ.

[2007 京都大]標準

x, yを相異なる正の実数とする。数列 $\{a_n\}$ を

$$a_1 = 0$$
, $a_{n+1} = xa_n + y^{n+1}$ $(n = 1, 2, 3, \dots)$

によって定めるとき, $\lim_{n\to\infty} a_n$ が有限の値に収束するような座標平面上の点 (x, y) の範囲を図示せよ。

[16] [2009 岡山大]標準

xを実数とし、次の無限級数を考える。

$$x^{2} + \frac{x^{2}}{1 + x^{2} - x^{4}} + \frac{x^{2}}{(1 + x^{2} - x^{4})^{2}} + \cdots + \frac{x^{2}}{(1 + x^{2} - x^{4})^{n-1}} + \cdots$$

- (1) この無限級数が収束するような x の範囲を求めよ。
- (2) この無限級数が収束するとき、その和として得られる x の関数を f(x) と書く。また、 $h(x) = f(\sqrt{|x|}) |x|$ とおく。このとき、 $\lim_{x\to 0} h(x)$ を求めよ。
- (3) (2) で求めた極限値を a とするとき, $\lim_{x\to 0} \frac{h(x)-a}{x}$ は存在するか。理由を付けて答えよ。

[17][2011 愛知教育大]基礎

 θ を $0 \le \theta \le \pi$ を満たす実数とする。単位円周上の点 P を,動径 OP と x 軸の正の部分と のなす角が θ である点とし,点 Q を x 軸の正の部分の点で,点 P からの距離が 2 であるものとする。また, $\theta = 0$ のときの点 Q の位置を A とする。

- (1) 線分 OQ の長さを θ を使って表せ。
- (2) 線分 QA の長さを L とするとき,極限値 $\lim_{\theta \to 0} \frac{L}{\theta^2}$ を求めよ。

[18] [2016 秋田大] 標準

- (1) 点 Q の座標を θ を用いて表せ。
- (2) 点 Q' と点 R' の座標を θ を用いて表せ。
- (3) 点 Pが点 A に限りなく近づくとき, $\dfrac{BR'}{BQ'}$ の極限を求めよ。ただし,

 $\lim_{x\to 0} \frac{\sin x}{x} = 1$ であることは用いてよい。

[19][2001 大阪教育大]標準

(1) $0 \le \theta_n \le \frac{\pi}{2}$ である数列 $\{\theta_n\}$ が

$$\theta_1 = \frac{\pi}{2}$$
, $\sin \theta_{n+1} = \frac{\sqrt{1 - \sqrt{1 - \sin^2 \theta_n}}}{\sqrt{2}}$ $(n = 1, 2, 3, \dots)$

を満たすとき、数列 $\{\theta_n\}$ の極限 $\lim_{n\to\infty}\theta_n$ を求めよ.

(2) a は正の実数とし、数列 $\{x_n\}$ を $x_n=\frac{\sin\theta_n}{a^n}$ と定める. 数列 $\{x_n\}$ が 0 でない実数 k に収束するとき、a と k の値を求めよ.

[1999 京都産業大]標準

O を原点とする平面上に点 P_0 $(1,\ 0)$ をとり,点 P_1 , P_2 , ……, P_n , …… を次のように定める.

点 P_n (n=1, 2, ……) は点 P_{n-1} を原点の周りに角度 θ だけ回転し、更に原点からの距離を r倍、すなわち $\angle P_{n-1} OP_n = \theta$ かつ $OP_n = r OP_{n-1}$ として得られる点である。ただし、 θ の単位はラジアンで $0 < \theta < \frac{\pi}{2}$ 、0 < r < 1 である。

このとき,次の問いに答えよ.

- (1) 線分の長さ P_0P_1 を求めよ.
- (2) 線分の長さ $P_{n-1}P_n$ を求めよ.
- (3) 無限級数の和 $L=\sum_{n=1}^{\infty}P_{n-1}P_{n}$ を求めよ.
- (4) $r=1-\theta$ とする. $\theta \longrightarrow 0$ のとき, Lの極限値を求めよ.